Identification of Time-Varying Non-Linear Systems for Brain Connectivity Analysis

نویسنده

  • Yang Li
چکیده

Many control systems encountered in physical, automobile engineering, economic phenomena and biomedical engineering fields are nonlinear and nonstationary to some extent. In general, nonlinear processes can be adequately characterized by a nonlinear model. Recently, a system can be obtained directly from experimental input/ output data by determining the system structure and the numerical values of the unknown parameters, this process is known as system identification. System identification techniques for linear and nonlinear systems have received such attention and have been widely applied to reveal fundamental properties of the system which are not apparent. Billings [1] surveyed the available approaches of non-linear system identification by considering the functional series of Volterra and Wiener, and the identification algorithms developed by Ku and Wolf [2]. Narendra and Parthasarathy [3] considered the orthogonal expansion methods and the kernel identification algorithms. All these methods discussed above were considered numerous alternatives and related topics which have been developed over the last decade or so.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive fuzzy pole placement for stabilization of non-linear systems

A new approach for pole placement of nonlinear systems using state feedback and fuzzy system is proposed. We use a new online fuzzy training method to identify and to obtain a fuzzy model for the unknown nonlinear system using only the system input and output. Then, we linearized this identified model at each sampling time to have an approximate linear time varying system. In order to stabilize...

متن کامل

Potentials of Evolving Linear Models in Tracking Control Design for Nonlinear Variable Structure Systems

Evolving models have found applications in many real world systems. In this paper, potentials of the Evolving Linear Models (ELMs) in tracking control design for nonlinear variable structure systems are introduced. At first, an ELM is introduced as a dynamic single input, single output (SISO) linear model whose parameters as well as dynamic orders of input and output signals can change through ...

متن کامل

On the Approximation of Pseudo Linear Systems by Linear Time Varying Systems (RESEARCH NOTE)

This paper presents a modified method for approximating nonlinear systems by a sequence of linear time varying systems. The convergence proof is outlined and the potential of this methodology is discussed. Simulation results are used to show the effectiveness of the proposed method.

متن کامل

Admissibility analysis for discrete-time singular systems with time-varying delays by adopting the state-space Takagi-Sugeno fuzzy model

This paper is pertained with the problem of admissibility analysis of uncertain discrete-time nonlinear singular systems by adopting the state-space Takagi-Sugeno fuzzy model with time-delays and norm-bounded parameter uncertainties. Lyapunov Krasovskii functionals are constructed to obtain delay-dependent stability condition in terms of linear matrix inequalities, which is dependent on the low...

متن کامل

NON-FRAGILE GUARANTEED COST CONTROL OF T-S FUZZY TIME-VARYING DELAY SYSTEMS WITH LOCAL BILINEAR MODELS

This paper focuses on the non-fragile guaranteed cost control problem for a class of T-S fuzzy time-varying delay systems with local bilinear models. The objective is to design a non-fragile guaranteed cost state feedback controller via the parallel distributed compensation (PDC) approach such that the closed-loop system is delay-dependent asymptotically stable and the closed-loop performance i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014